The Quartus U(-1,1)F
The series around U0:

U-5=-F5-F4+4F3+3F2-3F-1
U-4=-F4-F3+3F2+2F-1
U-3=-F3-F2+2F+1
U-2=-F2-F+1
U-1=-F-1
U0=-1
U1=1
U2=F+1
U3=F2+F-1
U4=F3+F2-2F-1
U5=F4+F3-3F2-2F+1
U6=F5+F4-4F3-3F2+3F+1
The quartus is symmetric with regard to U0-U1.
It can be derived from the primus by taking the subsequent sums of Un+1 and Un of that series (with U0 = u0+u-1 = -1).

Theorems
Theorems have been proved by complete induction.
For every integer k: Un | Un+k(2n-1) Basic property
Un+1*Un-1 =Un2-(F+2) Theorem1
U2n-1+1 =Un(Un-Un-1)Theorem 2.1
U2n+1 =(Un+1-Un-1)(Un-Un-1+Un-2- ... ±1)Theorem 2.2
U2n-1-1 =(Un+1-Un-1)(Un-1-Un-2+Un-3- ... ±1)Theorem 3.1
U2n-1 =Un(Un+1-Un)Theorem 3.2
Theorems 2 and 3 link terms around Un with terms at twice the index value. I call this the series' development 'from the belly'.

Note: The quartus of the factor (F2-2) is the term by term product of the tertius and the quartus of the factor F, which is also the primus of F on odd indices (primus theorem 2.1).

The quartus coefficients matrix
Disregarding signs, this matrix is identical to the tertius coefficients matrix.
The degree of a polynome is one less than its index.
Exponents decrease with steps of 1.
Note that the columns come in pairs with an index shift.
U1:1
U2:11
U3:11-1
U4:11-2-1
U5:11-3-21
U6:11-4-331
U7:11-5-463-1
U8:11-6-5106-4-1
U9:11-7-61510-10-41
U10:11-8-72115-20-1051
U11:11-9-82821-35-20155-1
U12:11-10-93628-56-353515-6-1
U13:11-11-104536-84-567035-21-61
U14:11-12-115545-120-8412670-56-2171
U15:11-13-126655-165-120210126-126-56287-1
U16:11-14-137866-220-165330210-252-1268428-8-1
U17:11-15-149178-286-220495330-462-25221084-36-81
U18:11-16-1510591-364-286715495-792-462462210-120-3691
U19:11-17-16120105-455-3641001715-1287-792924462-330-120459-1
U20:11-18-17136120-560-45513651001-2002-12871716924-792-33016545-10-1
U21:11-19-18153136-680-56018201365-3003-20023003-716-1716-792495165-55-101
U22:11-20-19171153-816-68023801820-4368-300350053003-3432-17161287495-220-55111
U23:11-21-20190171-969-81630602380-6188-436880085005-6435-343230031287-715-2206611-1
U24:11-22-21210190-1140-96938763060-8568-6188123768008-11440-643564353003-2002-71528666-12-1
U25:11-23-22231210-1330-114048453876-11628-85681856412376-19448-11440128706435-5005-20021001286-78-121
U26:11-24-23253231-1540-133059854845-15504-116282713218564-31824-194482431012870-11440-500530031001-364-78131