12 is carréphylic - approach of √12=2√3 ~ 3.4641016151

Subsequent approximations of √12 - the position of a fraction indicates whether it is over or under the root-value.
10123724313845973364335306271351468060317382873318817651848400110281812163526208790789611699831432070169415736504011264536016295761199461622359656350843527176127144...
0111127911132897125153181390135117412131252154321881724249296813511375658262087337745413403489061105378036504014704181575796168117411467726250843527...

Diophantine equation:s2-12p2 = 1
d = distance to nearest square N2:+3
Smallest non-trivial s:(2*9+3)/3rational: 7actual: 7⇒ F=14
Smallest non-trivial p:2*3/3rational: 2actual: 2⇒ primus foldage=2
v-value qt-blocks:32-12*12:-3
Number of series:5

Cross multiplying the red-green pairs renders subsequent solutions of the diophantine equation.
s1797135118817262087365040150843527...
p0228390543275658105378014677262...

In the numerator:U(1,7)14=1/2*U(2,14)14-half the secundus of 14.
In the denominator:U(0,2)14=2*U(0,1)14-the 2-fold primus of 14.
as well as ...
In the numerator:U(0,24)14=24*U(0,1)14-the 12*2-fold primus of 14.
In the denominator:U(1,7)14=1/2*U(2,14)14-half the secundus of 14.
and ...
In the numerator:U(-3,3)14=3*U(-1,1)14-the 3-fold quartus of 14.
In the denominator:U(1,1)14=-the tertius of 14.


23567810111213141517181920212223242627282930
31323334353738394041424344454647485051525354555657
58596061626365666768697071727374757677787980828384
858687888990919293949596979899101102103104105106107108109110