43 is carréphobic - approach of √43 ~ 6.5574385243

Subsequent approximations of √43 - the position of a fraction indicates whether it is over or under the root-value.
10123456713334659223282341400114115411941348222833263152979733279367614024343725472079093222907132000341093515528081963743237467827856137945904107315171351713024248647159009012...
0111111112579344352611742352965313482401345445075560661376668719913867349334880062667236801299468362135424802121173916365412061343369788424248647...

Diophantine equation:s2-43p2 = 1
d = distance to nearest square N2:-6
Smallest non-trivial s:(2*49-6)/6rational: 92/6actual: 3482⇒ F=6964
Smallest non-trivial p:2*7/6rational: 14/6actual: 531⇒ primus foldage=531
v-value qt-blocks:592-43*92:-2
Number of series:20

Cross multiplying the red-green pairs renders subsequent solutions of the diophantine equation.
s1348224248647...
p05313697884...

In the numerator:U(1,3482)6964=1/2*U(2,6964)6964-half the secundus of 6964.
In the denominator:U(0,531)6964=531*U(0,1)6964-the 531-fold primus of 6964.
as well as ...
In the numerator:U(0,22833)6964=22833*U(0,1)6964-the 43*531-fold primus of 6964.
In the denominator:U(1,3482)6964=1/2*U(2,6964)6964-half the secundus of 6964.
and ...
In the numerator:U(-59,59)6964=59*U(-1,1)6964-the 59-fold quartus of 6964.
In the denominator:U(9,9)6964=9*U(1,1)6964-the 9-fold tertius of 6964.


23567810111213141517181920212223242627282930
31323334353738394041424344454647485051525354555657
58596061626365666768697071727374757677787980828384
858687888990919293949596979899101102103104105106107108109110