57 is carréphobic - approach of √57 ~ 7.5498344353

Subsequent approximations of √57 - the position of a fraction indicates whether it is over or under the root-value.
101234567815536883151114012911442159317441895204621972348454515983205282507345601344280389881435482481083526684572285617886663487709088137257548268136199388757196313771351103971420...
0111111111279112015117119121123125127129131160221172719332160404560151641576816372169761758018184187881939211818026393278211291002931182406013771351...

Diophantine equation:s2-57p2 = 1
d = distance to nearest square N2:-7
Smallest non-trivial s:(2*64-7)/7rational: 121/7actual: 151⇒ F=302
Smallest non-trivial p:2*8/7rational: 16/7actual: 20⇒ primus foldage=20
v-value qt-blocks:152-57*22:-3
Number of series:14

Cross multiplying the red-green pairs renders subsequent solutions of the diophantine equation.
s11514560113771351...
p02060401824060...

In the numerator:U(1,151)302=1/2*U(2,302)302-half the secundus of 302.
In the denominator:U(0,20)302=20*U(0,1)302-the 20-fold primus of 302.
as well as ...
In the numerator:U(0,1140)302=1140*U(0,1)302-the 57*20-fold primus of 302.
In the denominator:U(1,151)302=1/2*U(2,302)302-half the secundus of 302.
and ...
In the numerator:U(-15,15)302=15*U(-1,1)302-the 15-fold quartus of 302.
In the denominator:U(2,2)302=2*U(1,1)302-the 2-fold tertius of 302.


23567810111213141517181920212223242627282930
31323334353738394041424344454647485051525354555657
58596061626365666768697071727374757677787980828384
858687888990919293949596979899101102103104105106107108109110