### Who's Online

We have 44 guests and no members online

62 is carréphylic - approach of √62 ~ 7.8740078740

Subsequent approximations of √62 - the position of a fraction indicates whether it is over or under the root-value.
 1 0 1 2 3 4 5 6 7 8 31 39 47 55 63 496 559 622 685 748 811 874 937 1000 3937 4937 5937 6937 7937 62496 70433 78370 86307 94244 102181 110118 118055 125992 490631 622023 748015 874007 999999 7874000 ... 0 1 1 1 1 1 1 1 1 1 4 5 6 7 8 63 71 79 87 95 103 111 119 127 500 627 754 881 1008 7937 8945 9953 10961 11969 12977 13985 14993 16001 62996 78997 94998 110999 127000 999999 ...

 Diophantine equation: s2-62p2 = 1 d = distance to nearest square N2: -2 Smallest non-trivial s: (2*64-2)/2 rational: 63 actual: 63 ⇒ F=126 Smallest non-trivial p: 2*8/2 rational: 8 actual: 8 ⇒ primus foldage=8 v-value qt-blocks: 82-62*12: +2 Number of series: 14

Cross multiplying the red-green pairs renders subsequent solutions of the diophantine equation.
 s 1 63 7937 999999 ... p 0 8 1008 127000 ...

 In the numerator: U(1,63)126 = 1/2*U(2,126)126 - half the secundus of 126. In the denominator: U(0,8)126 = 8*U(0,1)126 - the 8-fold primus of 126. as well as ... In the numerator: U(0,496)126 = 496*U(0,1)126 - the 62*8-fold primus of 126. In the denominator: U(1,63)126 = 1/2*U(2,126)126 - half the secundus of 126. and ... In the numerator: U(8,8)126 = 8*U(1,1)126 - the 8-fold tertius of 126. In the denominator: U(-1,1)126 = - the quartus of 126. and ... In the numerator: U(-31,31)126 = 31*U(-1,1)126 - the 31-fold quartus of 126. In the denominator: U(4,4)126 = 4*U(1,1)126 - the 4-fold tertius of 126.