62 is carréphylic - approach of √62 ~ 7.8740078740

Subsequent approximations of √62 - the position of a fraction indicates whether it is over or under the root-value.
1012345678313947556349655962268574881187493710003937493759376937793762496704337837086307942441021811101181180551259924906316220237480158740079999997874000...
01111111114567863717987951031111191275006277548811008793789459953109611196912977139851499316001629967899794998110999127000999999...

Diophantine equation:s2-62p2 = 1
d = distance to nearest square N2:-2
Smallest non-trivial s:(2*64-2)/2rational: 63actual: 63⇒ F=126
Smallest non-trivial p:2*8/2rational: 8actual: 8⇒ primus foldage=8
v-value qt-blocks:82-62*12:+2
Number of series:14

Cross multiplying the red-green pairs renders subsequent solutions of the diophantine equation.
s1637937999999...
p081008127000...

In the numerator:U(1,63)126=1/2*U(2,126)126-half the secundus of 126.
In the denominator:U(0,8)126=8*U(0,1)126-the 8-fold primus of 126.
as well as ...
In the numerator:U(0,496)126=496*U(0,1)126-the 62*8-fold primus of 126.
In the denominator:U(1,63)126=1/2*U(2,126)126-half the secundus of 126.
and ...
In the numerator:U(8,8)126=8*U(1,1)126-the 8-fold tertius of 126.
In the denominator:U(-1,1)126=-the quartus of 126.
and ...
In the numerator:U(-31,31)126=31*U(-1,1)126-the 31-fold quartus of 126.
In the denominator:U(4,4)126=4*U(1,1)126-the 4-fold tertius of 126.


23567810111213141517181920212223242627282930
31323334353738394041424344454647485051525354555657
58596061626365666768697071727374757677787980828384
858687888990919293949596979899101102103104105106107108109110