Page 7 of 8
Carréphylic classes: n2-n/2 (for even n)
Here are the first 6 carréphylic numbers of the form n2-n/2 (for even n) with the usual data.
Root-3 is a 'small numbers exception' on the general pattern because it is also a member of n2-1 and shows the characteristic 'sp-block shift' of that class.
The first non-trivial ab-blocks (second for root-3) follow a simple pattern (4n-1)/4. The s/p- and t/q-fractions are the only ones above the root-value.
The values 'v' equal half the numerator of the first t/q fraction and the numerator of the first q/t fraction respectively.
√3
1 | 0 | 1 | 2 | 3 | 5 | 7 | 12 | 19 | 26 | 45 | 71 | 97 | 168 | 265 | 362 | 627 | 989 | 1351 | 2340 | 3691 | 5042 | 8733 | 13775 | 18817 | 32592 | 51409 | 70226 | 121635 | 191861 | 262087 | 453948 | 716035 | 978122 | 1694157 | ... |
0 | 1 | 1 | 1 | 2 | 3 | 4 | 7 | 11 | 15 | 26 | 41 | 56 | 97 | 153 | 209 | 362 | 571 | 780 | 1351 | 2131 | 2911 | 5042 | 7953 | 10864 | 18817 | 29681 | 40545 | 70226 | 110771 | 151316 | 262087 | 413403 | 564719 | 978122 | ... |
√14
1 | 0 | 1 | 2 | 3 | 4 | 7 | 11 | 15 | 56 | 71 | 86 | 101 | 116 | 217 | 333 | 449 | 1680 | 2129 | 2578 | 3027 | 3476 | 6503 | 9979 | 13455 | 50344 | 63799 | 77254 | 90709 | 104164 | 194873 | 299037 | 403201 | 1508640 | 1911841 | 2315042 | 2718243 | 3121444 | 5839687 | 8961131 | 12082575 | 45208856 | ... |
0 | 1 | 1 | 1 | 1 | 1 | 2 | 3 | 4 | 15 | 19 | 23 | 27 | 31 | 58 | 89 | 120 | 449 | 569 | 689 | 809 | 929 | 1738 | 2667 | 3596 | 13455 | 17051 | 20647 | 24243 | 27839 | 52082 | 79921 | 107760 | 403201 | 510961 | 618721 | 726481 | 834241 | 1560722 | 2394963 | 3229204 | 12082575 | ... |
√33
1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 11 | 17 | 23 | 132 | 155 | 178 | 201 | 224 | 247 | 270 | 517 | 787 | 1057 | 6072 | 7129 | 8186 | 9243 | 10300 | 11357 | 12414 | 23771 | 36185 | 48599 | 279180 | 327779 | 376378 | 424977 | 473576 | 522175 | 570774 | 1092949 | 1663723 | 2234497 | 12836208 | 15070705 | 17305202 | 19539699 | 21774196 | 24008693 | 26243190 | 50251883 | 76495073 | 102738263 | 590186388 | ... |
0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 3 | 4 | 23 | 27 | 31 | 35 | 39 | 43 | 47 | 90 | 137 | 184 | 1057 | 1241 | 1425 | 1609 | 1793 | 1977 | 2161 | 4138 | 6299 | 8460 | 48599 | 57059 | 65519 | 73979 | 82439 | 90899 | 99359 | 190258 | 289617 | 388976 | 2234497 | 2623473 | 3012449 | 3401425 | 3790401 | 4179377 | 4568353 | 8747730 | 13316083 | 17884436 | 102738263 | ... |
√60
1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 15 | 23 | 31 | 240 | 271 | 302 | 333 | 364 | 395 | 426 | 457 | 488 | 945 | 1433 | 1921 | 14880 | 16801 | 18722 | 20643 | 22564 | 24485 | 26406 | 28327 | 30248 | 58575 | 88823 | 119071 | 922320 | 1041391 | 1160462 | 1279533 | 1398604 | 1517675 | 1636746 | 1755817 | 1874888 | 3630705 | 5505593 | 7380481 | 57168960 | 64549441 | 71929922 | 79310403 | 86690884 | 94071365 | 101451846 | 108832327 | 116212808 | 225045135 | 341257943 | 457470751 | 3543553200 | ... |
0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 3 | 4 | 31 | 35 | 39 | 43 | 47 | 51 | 55 | 59 | 63 | 122 | 185 | 248 | 1921 | 2169 | 2417 | 2665 | 2913 | 3161 | 3409 | 3657 | 3905 | 7562 | 11467 | 15372 | 119071 | 134443 | 149815 | 165187 | 180559 | 195931 | 211303 | 226675 | 242047 | 468659 | 710769 | 952816 | 7380481 | 8333297 | 9286113 | 10238929 | 11191745 | 12144561 | 13097377 | 14050193 | 15003009 | 29045391 | 44056211 | 59059220 | 457470751 | ... |
√95
1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 19 | 29 | 39 | 380 | 419 | 458 | 497 | 536 | 575 | 614 | 653 | 692 | 731 | 770 | 1501 | 2271 | 3041 | 29640 | ... |
0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 3 | 4 | 39 | 43 | 47 | 51 | 55 | 59 | 63 | 67 | 71 | 75 | 79 | 154 | 233 | 312 | 3041 | ... |
√138
1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 23 | 35 | 47 | 552 | 599 | 646 | 693 | 740 | 787 | 834 | 881 | 928 | 975 | 1022 | 1069 | 1116 | 2185 | 3301 | 4417 | 51888 | ... |
0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 3 | 4 | 47 | 51 | 55 | 59 | 63 | 67 | 71 | 75 | 79 | 83 | 87 | 91 | 95 | 186 | 281 | 376 | 4417 | ... |