33 is carréphylic - approach of √33 ~ 5.7445626465

Subsequent approximations of √33 - the position of a fraction indicates whether it is over or under the root-value.
1012345611172313215517820122424727051778710576072712981869243103001135712414237713618548599279180327779376378424977473576522175570774109294916637232234497128362081507070517305202195396992177419624008693262431905025188376495073102738263590186388...
011111112342327313539434790137184105712411425160917931977216141386299846048599570596551973979824399089999359190258289617388976223449726234733012449340142537904014179377456835387477301331608317884436102738263...

Diophantine equation:s2-33p2 = 1
d = distance to nearest square N2:-3
Smallest non-trivial s:(2*36-3)/3rational: 23actual: 23⇒ F=46
Smallest non-trivial p:2*6/3rational: 4actual: 4⇒ primus foldage=4
v-value tq-blocks:62-33*12:+3
v-value qt-blocks:112-33*22:-11
Number of series:10

Cross multiplying the red-green pairs renders subsequent solutions of the diophantine equation.
s1231057485992234497102738263...
p04184846038897617884436...

In the numerator:U(1,23)46=1/2*U(2,46)46-half the secundus of 46.
In the denominator:U(0,4)46=4*U(0,1)46-the 4-fold primus of 46.
as well as ...
In the numerator:U(0,132)46=132*U(0,1)46-the 33*4-fold primus of 46.
In the denominator:U(1,23)46=1/2*U(2,46)46-half the secundus of 46.
and ...
In the numerator:U(6,6)46=6*U(1,1)46-the 6-fold tertius of 46.
In the denominator:U(-1,1)46=-the quartus of 46.
and ...
In the numerator:U(-11,11)46=11*U(-1,1)46-the 11-fold quartus of 46.
In the denominator:U(2,2)46=2*U(1,1)46-the 2-fold tertius of 46.


23567810111213141517181920212223242627282930
31323334353738394041424344454647485051525354555657
58596061626365666768697071727374757677787980828384
858687888990919293949596979899101102103104105106107108109110