14 is carréphylic - approach of √14 ~ 3.7416573868

Subsequent approximations of √14 - the position of a fraction indicates whether it is over or under the root-value.
101234711155671861011162173334491680212925783027347665039979134555034463799772549070910416419487329903740320115086401911841231504227182433121444583968789611311208257545208856...
011111234151923273158891204495696898099291738266735961345517051206472424327839520827992110776040320151096161872172648183424115607222394963322920412082575...

Diophantine equation:s2-14p2 = 1
d = distance to nearest square N2:-2
Smallest non-trivial s:(2*16-2)/2rational: 30actual: 30⇒ F=60
Smallest non-trivial p:2*4/2rational: 4actual: 4⇒ primus foldage=4
v-value tq-blocks:42-14*12:+2
v-value qt-blocks:72-14*22:-7
Number of series:8

Cross multiplying the red-green pairs renders subsequent solutions of the diophantine equation.
s1154491345540320112082575...
p0412035961077603229204...

In the numerator:U(1,15)30=1/2*U(2,30)30-half the secundus of 30.
In the denominator:U(0,4)30=4*U(0,1)30-the 4-fold primus of 30.
as well as ...
In the numerator:U(0,56)30=56*U(0,1)30-the 14*4-fold primus of 30.
In the denominator:U(1,15)30=1/2*U(2,30)30-half the secundus of 30.
and ...
In the numerator:U(4,4)30=4*U(1,1)30-the 4-fold tertius of 30.
In the denominator:U(-1,1)30=-the quartus of 30.
and ...
In the numerator:U(-7,7)30=7*U(-1,1)30-the 7-fold quartus of 30.
In the denominator:U(2,2)30=2*U(1,1)30-the 2-fold tertius of 30.


23567810111213141517181920212223242627282930
31323334353738394041424344454647485051525354555657
58596061626365666768697071727374757677787980828384
858687888990919293949596979899101102103104105106107108109110