Article Index


Carréphylic classes: n2-1

Here are the first 10 carréphylic numbers of the form n2-1 with the usual data.
For numbers 'n' that are one less than a square, or N2-n = 1, the formula gives the sp-fraction and factor of the base-2 accelleration of the series.
The first fraction is N/1, F=2N, because obviously N2-n*12 = 1 is a solution of the diophantine equation.
Note that the q/t fractions immediately precede the sp-blocks, that their v-value decreases with steps of 2 over 'n' and that all approximations except the s/p-fractions are below the root-value.
Compare n2+n.

√3
10123571219264571971682653626279891351234036915042873313775188173259251409702261216351918612620874539487160359781221694157...
01112347111526415697153209362571780135121312911504279531086418817296814054570226110771151316262087413403564719978122...

√8
101238111417486582992803794785771632220927863363951212875162381960155440750419464211424332312843737155161466585718833282549185321504238808991097684014857739187386382261953763977712...
0111134561723293599134169204577781985118933634552574169301960126531334614039111424315463419502523541666585790127311366891372105388089952530046625109799721422619537...

√15
10123415192327311201511822132449451189143316771921744093611128213203151245857573699888231039471190714611605802316993028183739374443630705456814955055936443037738048128584480...
01111145678313947556324430737043349619212417291334093905151241902922934268393074411907114981518055921130324204793744411794911421538166358519056327380481...

√24
1012345242934394449240289338387436485237628613346383143164801235202832133122379234272447525232824280349327874375399422924470449230472027751693245618371606741865164656965228143762747134132128306367852714144223646099201225839040...
0111111567891049596979899948558468378288198048015781676177418721970147525572266692776628863299603047044956647966250975853985456995059946569655607564655816375087628459361940996046099201...

√35
10123456354147535965714204915626337047758465005585166977543838992351008159640697217980289883999641100451201267106758308019509271071053119117913113051431431846846098998911133132212762753141941841562561517057046100910845...
0111111167891011127183951071191311438469891132127514181561170410081117851348915193168971860120305120126140431160736181041201346221651241956143143116733871915343215729923992552641211288316717057046...

√48
101234567485562697683909767276986696310601157125413519360107111206213413147641611517466188171303681491851680021868192056362244532432702620871815792207787923399662602053286414031262273388314365040125290720...
0111111117891011121314971111251391531671811951351154617411936213123262521271618817215332424926965296813239735113378292620872999163377453755744134034512324890615268903650401...

√63
10123456786371798795103111119127100811351262138915161643177018972024160651808920113221372416126185282093023332257256032...
0111111111891011121314151612714315917519120722323925520242279253427893044329935543809406432257...

√80
101234567898089981071161251341431521611440160117621923208422452406256727282889258402872931618345073739640285431744606348952518414636805155215673626192036710447228857747268265678784089302498320400925064910180898111111471204139612971645139018941483214315762392166926411493035201659961611826888021993814432160740842327667252494593662661520072828446482995372892679142960...
011111111119101112131415161718161179197215233251269287305323288932123535385841814504482751505473579651841576376343369229750258082186617924139820910400593024910342541138259124226413462691450274155427916582841762289186629416692641185589352042522922291523241578172602411127890405297566993162299333489287299537289...

√99
1012345678910991091191291391491591691791891991980217923782577277629753174337335723771397039501...
01111111111110111213141516171819201992192392592792993193393593793993970...

√120
1012345678910111201311421531641751861972082192302412640...
0111111111111111213141516171819202122241...