3 is carréphylic - approach of √3 ~ 1.7320508076

Subsequent approximations of √3 - the position of a fraction indicates whether it is over or under the root-value.
10123571219264571971682653626279891351234036915042873313775188173259251409702261216351918612620874539487160359781221694157...
01112347111526415697153209362571780135121312911504279531086418817296814054570226110771151316262087413403564719978122...

3 is one less than a square, so the exception mentioned in on root approach applies: 7 and 4, as rendered by the formula, are not the first non-trivial sp-block, but the second, the first being 2 and 1 because 22-3*12 = 1 satisfies the diophantine equation.
Diophantine equation:s2-3p2 = 1
d = distance to nearest square N2:-1
Smallest non-trivial s:(2*4-1)/1rational: 7actual: 7 (2)⇒ F=14 (4)
Smallest non-trivial p:2*2/1rational: 4actual: 4 (1)⇒ primus foldage=4 (1)
v-value qt-blocks:12-3*12:-2
Number of series:3

Cross multiplying the red-green pairs renders subsequent solutions of the diophantine equation.
s1272697362135150421881770226262087978122...
p014155620978029111086440545151316564719...

In the numerator:U(1,2)4=1/2*U(2,4)4-half the secundus of 4.
In the denominator:U(0,1)4=-the primus of 4.
as well as ...
In the numerator:U(0,3)4=3*U(0,1)4-the 3-fold primus of 4.
In the denominator:U(1,2)4=1/2*U(2,4)4-half the secundus of 4.
and ...
In the numerator:U(-1,1)4=-the quartus of 4.
In the denominator:U(1,1)4=-the tertius of 4.


23567810111213141517181920212223242627282930
31323334353738394041424344454647485051525354555657
58596061626365666768697071727374757677787980828384
858687888990919293949596979899101102103104105106107108109110