60 is carréphylic - approach of √60=2√15 ~ 7.7459666924

Subsequent approximations of √60 - the position of a fraction indicates whether it is over or under the root-value.
1012345678152331240271302333364395426457488945143319211488016801187222064322564244852640628327302485857588823119071922320104139111604621279533139860415176751636746175581718748883630705550559373804815716896064549441719299227931040386690884940713651014518461088323271162128082250451353412579434574707513543553200...
011111111123431353943475155596312218524819212169241726652913316134093657390575621146715372119071134443149815165187180559195931211303226675242047468659710769952816738048183332979286113102389291119174512144561130973771405019315003009290453914405621159059220457470751...

Diophantine equation:s2-60p2 = 1
d = distance to nearest square N2:-4
Smallest non-trivial s:(2*64-4)/4rational: 31actual: 31⇒ F=62
Smallest non-trivial p:2*8/4rational: 4actual: 4⇒ primus foldage=4
v-value t/q-fraction:82-60*12:+4
v-value q/t-fraction:152-60*22:-15
Number of series:12

Cross multiplying the red-green pairs renders subsequent solutions of the diophantine equation.
s13119211190717380481457470751...
p042481537295281659059220...

In the numerator:U(1,31)62=1/2*U(2,62)62-half the secundus of 62.
In the denominator:U(0,4)62=4*U(0,1)62-the 4-fold primus of 62.
as well as ...
In the numerator:U(0,240)62=240*U(0,1)62-the 60*4-fold primus of 62.
In the denominator:U(1,31)62=1/2*U(2,62)62-half the secundus of 62.
and ...
In the numerator:U(8,8)62=8*U(1,1)62-the 8-fold tertius of 62.
In the denominator:U(-1,1)62=-the quartus of 62.
and ...
In the numerator:U(-15,15)62=15*U(-1,1)62-the 15-fold quartus of 62.
In the denominator:U(2,2)62=2*U(1,1)62-the 2-fold tertius of 62.


23567810111213141517181920212223242627282930
31323334353738394041424344454647485051525354555657
58596061626365666768697071727374757677787980828384
858687888990919293949596979899101102103104105106107108109110