15 is carréphylic - approach of √15 ~ 3.8729833462

Subsequent approximations of √15 - the position of a fraction indicates whether it is over or under the root-value.
10123415192327311201511822132449451189143316771921744093611128213203151245857573699888231039471190714611605802316993028183739374443630705456814955055936443037738048128584480...
01111145678313947556324430737043349619212417291334093905151241902922934268393074411907114981518055921130324204793744411794911421538166358519056327380481...

15 is one less than a square, so the exception mentioned in on root approach applies: 31 and 8, as rendered by the formula, are not the first non-trivial sp-block, but the second, the first being 4 and 1 because 42-15*12 = 1 satisfies the diophantine equation.
Diophantine equation:s2-15p2 = 1
d = distance to nearest square N2:-1
Smallest non-trivial s:(2*16-1)/1rational: 31actual: 31 (4)⇒ F=62 (8)
Smallest non-trivial p:2*4/1rational: 8actual: 8 (1)⇒ primus foldage=8 (1)
v-value qt-blocks:32-15*12:-6
Number of series:5

Cross multiplying the red-green pairs renders subsequent solutions of the diophantine equation.
s14312441921151241190719374447380481...
p018634963905307442420471905632...

In the numerator:U(1,4)8=1/2*U(2,8)8-half the secundus of 8.
In the denominator:U(0,1)8=-the primus of 8.
as well as ...
In the numerator:U(0,15)8=15*U(0,1)8-the 15-fold primus of 8.
In the denominator:U(1,4)8=1/2*U(2,8)8-half the secundus of 8.
and ...
In the numerator:U(-3,3)8=3*U(-1,1)8-the 3-fold quartus of 8.
In the denominator:U(1,1)8=-the tertius of 8.


23567810111213141517181920212223242627282930
31323334353738394041424344454647485051525354555657
58596061626365666768697071727374757677787980828384
858687888990919293949596979899101102103104105106107108109110