48 is carréphylic - approach of √48=4√3 ~ 6.9282032303

Subsequent approximations of √48 - the position of a fraction indicates whether it is over or under the root-value.
101234567485562697683909767276986696310601157125413519360107111206213413147641611517466188171303681491851680021868192056362244532432702620871815792207787923399662602053286414031262273388314365040125290720...
0111111117891011121314971111251391531671811951351154617411936213123262521271618817215332424926965296813239735113378292620872999163377453755744134034512324890615268903650401...

48 is one less than a square, so the exception mentioned in on root approach applies: 97 and 14, as rendered by the formula, are not the first non-trivial sp-block, but the second, the first being 7 and 1 because 72-48*12 = 1 satisfies the diophantine equation.
Diophantine equation:s2-48p2 = 1
d = distance to nearest square N2:-1
Smallest non-trivial s:(2*49-1)/1rational: 97actual: 97 (7)⇒ F=194 (14)
Smallest non-trivial p:2*7/1rational: 14actual: 14 (1)⇒ primus foldage=14 (1)
v-value qt-blocks:62-48*12:-12
Number of series:8

Cross multiplying the red-green pairs renders subsequent solutions of the diophantine equation.
s17971351188172620873650401...
p0114195271637829526890...

In the numerator:U(1,7)14=1/2*U(2,14)14-half the secundus of 14.
In the denominator:U(0,1)14=-the primus of 14.
as well as ...
In the numerator:U(0,48)14=48*U(0,1)14-the 48-fold primus of 14.
In the denominator:U(1,7)14=1/2*U(2,14)14-half the secundus of 14.
and ...
In the numerator:U(-6,6)14=6*U(-1,1)14-the 6-fold quartus of 14.
In the denominator:U(1,1)14=-the tertius of 14.


23567810111213141517181920212223242627282930
31323334353738394041424344454647485051525354555657
58596061626365666768697071727374757677787980828384
858687888990919293949596979899101102103104105106107108109110