5 is carréphylic - approach of √35 ~ 5.9160797831

Subsequent approximations of √35 - the position of a fraction indicates whether it is over or under the root-value.
10123456354147535965714204915626337047758465005585166977543838992351008159640697217980289883999641100451201267106758308019509271071053119117913113051431431846846098998911133132212762753141941841562561517057046100910845...
0111111167891011127183951071191311438469891132127514181561170410081117851348915193168971860120305120126140431160736181041201346221651241956143143116733871915343215729923992552641211288316717057046...

35 is one less than a square, so the exception mentioned in on root approach applies: 71 and 12, as rendered by the formula, are not the first non-trivial sp-block, but the second, the first being 6 and 1 because 62-35*12 = 1 satisfies the diophantine equation.
Diophantine equation:s2-35p2 = 1
d = distance to nearest square N2:-1
Smallest non-trivial s:(2*36-1)/1rational: 71actual: 71 (6)⇒ F=142 (12)
Smallest non-trivial p:2*6/1rational: 12actual: 12 (1)⇒ primus foldage=12 (1)
v-value qt-blocks:52-35*12:-10
Number of series:7

Cross multiplying the red-green pairs renders subsequent solutions of the diophantine equation.
s167184610081120126143143117057046...
p01121431704203052419562883167...

In the numerator:U(1,6)12=1/2*U(2,12)12-half the secundus of 12.
In the denominator:U(0,1)12=-the primus of 12.
as well as ...
In the numerator:U(0,35)12=35*U(0,1)12-the 35-fold primus of 12.
In the denominator:U(1,6)12=1/2*U(2,12)12-half the secundus of 12.
and ...
In the numerator:U(-5,5)12=5*U(-1,1)12-the 5-fold quartus of 12.
In the denominator:U(1,1)12=-the tertius of 12.


23567810111213141517181920212223242627282930
31323334353738394041424344454647485051525354555657
58596061626365666768697071727374757677787980828384
858687888990919293949596979899101102103104105106107108109110