63 is carréphylic - approach of √63=3√7 ~ 7.9372539332

Subsequent approximations of √63 - the position of a fraction indicates whether it is over or under the root-value.
10123456786371798795103111119127100811351262138915161643177018972024160651808920113221372416126185282093023332257256032...
0111111111891011121314151612714315917519120722323925520242279253427893044329935543809406432257...

63 is one less than a square, so the exception mentioned in on root approach applies: 127 and 16, as rendered by the formula, are not the first non-trivial sp-block, but the second, the first being 8 and 1 because 82-63*12 = 1 satisfies the diophantine equation.
Diophantine equation:s2-63p2 = 1
d = distance to nearest square N2:-1
Smallest non-trivial s:(2*64-1)/1rational: 127actual: 127 (8)⇒ F=254 (16)
Smallest non-trivial p:2*8/1rational: 16actual: 16 (1)⇒ primus foldage=16 (1)
v-value tq-blocks:72-63*12:-14
Number of series:9

Cross multiplying the red-green pairs renders subsequent solutions of the diophantine equation.
s18127202432257...
p01162554064...

In the numerator:U(1,8)16=1/2*U(2,16)16-half the secundus of 16.
In the denominator:U(0,1)16=-the primus of 16.
as well as ...
In the numerator:U(0,63)16=63*U(0,1)16-the 63-fold primus of 16.
In the denominator:U(1,8)16=1/2*U(2,16)16-half the secundus of 16.
and ...
In the numerator:U(-7,7)16=7*U(-1,1)16-the 7-fold quartus of 16.
In the denominator:U(1,1)16=-the tertius of 16.


23567810111213141517181920212223242627282930
31323334353738394041424344454647485051525354555657
58596061626365666768697071727374757677787980828384
858687888990919293949596979899101102103104105106107108109110