24 is carréphylic - approach of √24=2√6 ~ 4.8989794856

Subsequent approximations of √24 - the position of a fraction indicates whether it is over or under the root-value.
1012345242934394449240289338387436485237628613346383143164801235202832133122379234272447525232824280349327874375399422924470449230472027751693245618371606741865164656965228143762747134132128306367852714144223646099201225839040...
0111111567891049596979899948558468378288198048015781676177418721970147525572266692776628863299603047044956647966250975853985456995059946569655607564655816375087628459361940996046099201...

24 is one less than a square, so the exception mentioned in on root approach applies: 49 and 10, as rendered by the formula, are not the first non-trivial sp-block, but the second, the first being 5 and 1 because 52-24*12 = 1 satisfies the diophantine equation.
Diophantine equation:s2-24p2 = 1
d = distance to nearest square N2:-1
Smallest non-trivial s:(2*25-1)/1rational: 49actual: 49 (5)⇒ F=98 (10)
Smallest non-trivial p:2*5/1rational: 10actual: 10 (1)⇒ primus foldage=10 (1)
v-value qt-blocks:42-24*12:-8
Number of series:6

Cross multiplying the red-green pairs renders subsequent solutions of the diophantine equation.
s1549485480147525470449465696546099201...
p0110999809701960309505999409960...

In the numerator:U(1,5)10=1/2*U(2,10)10-half the secundus of 10.
In the denominator:U(0,1)10=-the primus of 10.
as well as ...
In the numerator:U(0,24)10=24*U(0,1)10-the 24-fold primus of 10.
In the denominator:U(1,5)10=1/2*U(2,10)10-half the secundus of 10.
and ...
In the numerator:U(-4,4)10=4*U(-1,1)10-the 4-fold quartus of 10.
In the denominator:U(1,1)10=-the tertius of 10.


23567810111213141517181920212223242627282930
31323334353738394041424344454647485051525354555657
58596061626365666768697071727374757677787980828384
858687888990919293949596979899101102103104105106107108109110