99 is carréphylic - approach of √99=3√11 ~ 9.9498743711

Subsequent approximations of √99 - the position of a fraction indicates whether it is over or under the root-value.
1012345678910991091191291391491591691791891991980217923782577277629753174337335723771397039501...
01111111111110111213141516171819201992192392592792993193393593793993970...

99 is one less than a square, so the exception mentioned in on root approach applies: 199 and 20, as rendered by the formula, are not the first non-trivial sp-block, but the second, the first being 10 and 1 because 102-99*12 = 1 satisfies the diophantine equation.
Diophantine equation:s2-99p2 = 1
d = distance to nearest square N2:-1
Smallest non-trivial s:(2*100-1)/1rational: 199actual: 199 (10)⇒ F=398 (20)
Smallest non-trivial p:2*10/1rational: 20actual: 20 (1)⇒ primus foldage=20 (1)
v-value tq-blocks:92-99*12:-18
Number of series:11

Cross multiplying the red-green pairs renders subsequent solutions of the diophantine equation.
s1101993970...
p0120399...

In the numerator:U(1,10)20=1/2*U(2,20)20-half the secundus of 20.
In the denominator:U(0,1)20=-the primus of 20.
as well as ...
In the numerator:U(0,99)20=99*U(0,1)20-the 99-fold primus of 20.
In the denominator:U(1,10)20=1/2*U(2,20)20-half the secundus of 20.
and ...
In the numerator:U(-9,9)20=9*U(-1,1)20-the 9-fold quartus of 20.
In the denominator:U(1,1)20=-the tertius of 20.


23567810111213141517181920212223242627282930
31323334353738394041424344454647485051525354555657
58596061626365666768697071727374757677787980828384
858687888990919293949596979899101102103104105106107108109110