### Who's Online

We have 82 guests and no members online

8 is carréphylic - approach of √8=2√2 ~ 2.8284271247

Subsequent approximations of √8 - the position of a fraction indicates whether it is over or under the root-value.
 1 0 1 2 3 8 11 14 17 48 65 82 99 280 379 478 577 1632 2209 2786 3363 9512 12875 16238 19601 55440 75041 94642 114243 323128 437371 551614 665857 1883328 2549185 3215042 3880899 10976840 14857739 18738638 22619537 63977712 ... 0 1 1 1 1 3 4 5 6 17 23 29 35 99 134 169 204 577 781 985 1189 3363 4552 5741 6930 19601 26531 33461 40391 114243 154634 195025 235416 665857 901273 1136689 1372105 3880899 5253004 6625109 7997214 22619537 ...

8 is one less than a square, so the exception mentioned in on root approach applies: 17 and 6, as rendered by the formula, are not the first non-trivial sp-block, but the second, the first being 3 and 1 because 32-8*12 = 1 satisfies the diophantine equation.
 Diophantine equation: s2-8p2 = 1 d = distance to nearest square N2: -1 Smallest non-trivial s: (2*9-1)/1 rational: 17 actual: 17 (3) ⇒ F=34 (6) Smallest non-trivial p: 2*3/1 rational: 6 actual: 6 (1) ⇒ primus foldage=6 (1) v-value qt-blocks: 22-8*12: -4 Number of series: 4

Cross multiplying the red-green pairs renders subsequent solutions of the diophantine equation.
 s 1 3 17 99 577 3363 19601 114243 665857 3880899 22619537 ... p 0 1 6 35 204 1189 6930 40391 235416 1372105 7997214 ...

 In the numerator: U(1,3)6 = 1/2*U(2,6)6 - half the secundus of 6. In the denominator: U(0,1)6 = - the primus of 6. as well as ... In the numerator: U(0,8)6 = 8*U(0,1)6 - the 8-fold primus of 6. In the denominator: U(1,3)6 = 1/2*U(2,6)6 - half the secundus of 6. and ... In the numerator: U(-2,2)6 = 2*U(-1,1)6 - the 2-fold quartus of 6. In the denominator: U(1,1)6 = - the tertius of 6.