38 is carréphylic - approach of √38 ~ 6.1644140030

Subsequent approximations of √38 - the position of a fraction indicates whether it is over or under the root-value.
1012345625313722826530233937641345018372287273716872196092234625083278203055733294135913169207202501124830014508011653302185580320583042260805246330610055725125190311498233717985374410733966512232200213730433915228667616726901318225135074398773792623908711084904376833193972...
01111111456374349556167732983714442737318136254069451349575401220482744932850202501235351268201301051333901366751399601163125420308552430456149823371741279319843249222737052470416127134617295650731206907481502558211798208941108490437...

Diophantine equation:s2-38p2 = 1
d = distance to nearest square N2:+2
Smallest non-trivial s:(2*36+2)/2rational: 37actual: 37⇒ F=74
Smallest non-trivial p:2*6/2rational: 6actual: 6⇒ primus foldage=6
v-value qt-blocks:62-38*12:-2
Number of series:10

Cross multiplying the red-green pairs renders subsequent solutions of the diophantine equation.
s1372737202501149823371108490437...
p06444328502430456179820894...

In the numerator:U(1,37)74=1/2*U(2,74)74 -half the secundus of 74.
In the denominator:U(0,6)74=6*U(0,1)74-the 6-fold primus of 74.
as well as ...
In the numerator:U(0,228)74=228*U(0,1)74-the 38*6-fold primus of 74.
In the denominator:U(1,37)74=1/2*U(2,74)74-half the secundus of 74.
and ...
In the numerator:U(-6,6)74=6*U(-1,1)74-the 6-fold quartus of 74.
In the denominator:U(1,1)74=-the tertius of 74.


23567810111213141517181920212223242627282930
31323334353738394041424344454647485051525354555657
58596061626365666768697071727374757677787980828384
858687888990919293949596979899101102103104105106107108109110