26 is carréphylic - approach of √26 ~ 5.0990195136

Subsequent approximations of √26 - the position of a fraction indicates whether it is over or under the root-value.
10123453136414651260311362413464515314136564171468652012652031721369224212347324525253203513728764254014779265304512704780323523137656824296133482658453570353267266138029696433867314874376654100801275861040...
011111167891051617181911016167178189191020520162217241826192811030162826731278342893729104030530451634481738511842541946571105060164076367458237850883895594391061004054100801...

Diophantine equation:s2-26p2 = 1
d = distance to nearest square N2:+1
Smallest non-trivial s:(2*25+1)/1rational: 51actual: 51⇒ F=102
Smallest non-trivial p:2*5/1rational: 10actual: 10⇒ primus foldage=10
v-value qt-blocks:52-26*12:-1
Number of series:11

Cross multiplying the red-green pairs renders subsequent solutions of the diophantine equation.
s151520153045154100801...
p010102010403010610040...

In the numerator:U(1,51)102=1/2*U(2,102)102-half the secundus of 102.
In the denominator:U(0,10)102=10*U(0,1)102-the 10-fold primus of 102.
as well as ...
In the numerator:U(0,260)102=260*U(0,1)102-the 26*10-fold primus of 102.
In the denominator:U(1,51)102=1/2*U(2,102)102-half the secundus of 102.
and ...
In the numerator:U(-5,5)102=5*U(-1,1)102-the 5-fold quartus of 102.
In the denominator:U(1,1)102=-the tertius of 102.


23567810111213141517181920212223242627282930
31323334353738394041424344454647485051525354555657
58596061626365666768697071727374757677787980828384
858687888990919293949596979899101102103104105106107108109110