46 is carréphobic - approach of √46 ~ 6.7823299831

Subsequent approximations of √46 - the position of a fraction indicates whether it is over or under the root-value.
1012345672027346195156529685841997215031475297137411903824335165048189383213718238053262388286723311058335393981844131723716526302969867462249775923642574695933339323409316874852405110464046615316451725780498366877448392657946611843844498032886160...
0111111113459142378101124147317464781202628073588243352792331511350993868742275458634945114476519421624366743788368155011194333796182491561560350487154481154283952258287638011271986054181366166891746279601184384449...

Diophantine equation:s2-46p2 = 1
d = distance to nearest square N2:-3
Smallest non-trivial s:(2*49-3)/3rational: 95/3actual: 24335⇒ F=48670
Smallest non-trivial p:2*7/3rational: 14/3actual: 3588⇒ primus foldage=3588
v-value tq-blocks:1562-46*232:+2
v-value qt-blocks:5292-46*782:-23
Number of series:24

Cross multiplying the red-green pairs renders subsequent solutions of the diophantine equation.
s1243351184384449...
p03588174627960...

In the numerator:U(1,24335)48670=1/2*U(2,48670)48670-half the secundus of 48670.
In the denominator:U(0,3588)48670=3588*U(0,1)48670-the 3588-fold primus of 48670.
as well as ...
In the numerator:U(0,165048)48670=165048*U(0,1)48670-the 46*3588-fold primus of 48670.
In the denominator:U(1,24335)48670=1/2*U(2,48670)48670-half the secundus of 48670.
and ...
In the numerator:U(156,156)48670=156*U(1,1)48670-the 156-fold tertius of 48670.
In the denominator:U(-23,23)48670=23*U(-1,1)48670-the 23-fold quartus of 48670.
and ...
In the numerator:U(-529,529)48670=529*U(-1,1)48670-the 529-fold quartus of 48670.
In the denominator:U(78,78)48670=78*U(1,1)48670-the 78-fold tertius of 48670.


23567810111213141517181920212223242627282930
31323334353738394041424344454647485051525354555657
58596061626365666768697071727374757677787980828384
858687888990919293949596979899101102103104105106107108109110