13 is carréphobic - approach of √13 ~ 3.6055512755

Subsequent approximations of √13 - the position of a fraction indicates whether it is over or under the root-value.
101234711188310111913725639364923402989363842874936922314159233821076871310691544511778333322845101178424013037320387972147221225564523640692411971447183783713034981813977764317012746120047727923082709743130437666213147310934358493942439020...
011111235232833387110918064982910091189136925583927648529867363524283749322921591414812336408424011076041130968115433211776961332028250972438417525387673434718486855602393640199181196223111836422293032645401093435849...

Diophantine equation:s2-13p2 = 1
d = distance to nearest square N2:-3
Smallest non-trivial s:(2*16-3)/3rational: 29/3actual: 649⇒ F=1298
Smallest non-trivial p:2*4/3rational: 8/3actual: 180⇒ primus foldage=180
v-value qt-blocks:182-13*52:-1
Number of series:15

Cross multiplying the red-green pairs renders subsequent solutions of the diophantine equation.
s16498424011093435849...
p0180233640303264540...

In the numerator:U(1,649)1298=1/2*U(2,1298)1298-half the secundus of 1298.
In the denominator:U(0,180)1298=180*U(0,1)1298-the 180-fold primus of 1298.
as well as ...
In the numerator:U(0,2340)1298=2340*U(0,1)1298-the 13*180-fold primus of 1298.
In the denominator:U(1,649)1298=1/2*U(2,1298)1298-half the secundus of 1298.
and ...
In the numerator:U(-18,18)1298=18*U(-1,1)1298-the 18-fold quartus of 1298.
In the denominator:U(5,5)1298=5*U(1,1)1298-the 5-fold tertius of 1298.


23567810111213141517181920212223242627282930
31323334353738394041424344454647485051525354555657
58596061626365666768697071727374757677787980828384
858687888990919293949596979899101102103104105106107108109110