28 is carréphobic - approach of √28=2√7 ~ 5.2915026221

Subsequent approximations of √28 - the position of a fraction indicates whether it is over or under the root-value.
10123451116213790127672799926105311801307274140485355940322854322571706882029452352022674592997163319736962031028176136014923883255804826819315143354080...
0111111234717241271511751992232475187651012177743196096322573835344449505455664162737131570194307257044451351109700915483608193151...

Diophantine equation:s2-28p2 = 1
d = distance to nearest square N2:+3
Smallest non-trivial s:(2*25+3)/3rational: 53/3actual: 127⇒ F=254
Smallest non-trivial p:2*5/3rational: 10/3actual: 24⇒ primus foldage=24
v-value tq-blocks:162-28*32:+4
v-value qt-blocks:212-28*42:-7
Number of series:12

Cross multiplying the red-green pairs renders subsequent solutions of the diophantine equation.
s1127322578193151...
p02460961548360...

In the numerator:U(1,127)254=1/2*U(2,254)254-half the secundus of 254.
In the denominator:U(0,24)254=24*U(0,1)254-the 24-fold primus of 254.
as well as ...
In the numerator:U(0,672)254=672*U(0,1)254-the 28*24-fold primus of 254.
In the denominator:U(1,127)254=1/2*U(2,254)254-half the secundus of 254.
and ...
In the numerator:U(16,16)254=16*U(1,1)254-the 16-fold tertius of 254.
In the denominator:U(-3,3)254=3*U(-1,1)254-the 3-fold quartus of 254.
and ...
In the numerator:U(-21,21)254=21*U(-1,1)254-the 21-fold quartus of 254.
In the denominator:U(4,4)254=4*U(1,1)254-the 4-fold tertius of 254.

Note: 28 is carréphobic, but has carréphylic ancestry.


23567810111213141517181920212223242627282930
31323334353738394041424344454647485051525354555657
58596061626365666768697071727374757677787980828384
858687888990919293949596979899101102103104105106107108109110