17 is carréphylic - approach of √17 ~ 4.1231056256

Subsequent approximations of √17 - the position of a fraction indicates whether it is over or under the root-value.
1012342125293313616920223526813731641190921778976111531333015507176849059710828112596514364959228073592987957810232271166876597802971449058311781947865739081504...
01111156783341495765333398463528217727053233376142892197326262305513484014364917848921332924816928300914498851732894201590322989129478657...

Diophantine equation:s2-17p2 = 1
d = distance to nearest square N2:+1
Smallest non-trivial s:(2*16+1)/1rational: 33actual: 33⇒ F=38
Smallest non-trivial p:2*4/1rational: 8actual: 8⇒ primus foldage=8
v-value qt-blocks:42-17*12:-1
Number of series:9

Cross multiplying the red-green pairs renders subsequent solutions of the diophantine equation.
s13321771436499478657...
p08528348402298912...

In the numerator:U(1,33)66=1/2*U(2,66)66-half the secundus of 66.
In the denominator:U(0,8)66=8*U(0,1)66-the 8-fold primus of 66.
as well as ...
In the numerator:U(0,136)66=136*U(0,1)66-the 17*8-fold primus of 66.
In the denominator:U(1,33)66=1/2*U(2,66)66-half the secundus of 66.
and ...
In the numerator:U(-4,4)66=4*U(-1,1)66-the 4-fold quartus of 66.
In the denominator:U(1,1)66=-the tertius of 66.


23567810111213141517181920212223242627282930
31323334353738394041424344454647485051525354555657
58596061626365666768697071727374757677787980828384
858687888990919293949596979899101102103104105106107108109110