29 is carréphobic - approach of √29 ~ 5.3851648071

Subsequent approximations of √29 - the position of a fraction indicates whether it is over or under the root-value.
1012345111627437044751758765772715242251377560269801527806258172382821839198410178521337131515652852784368313722108761787101339971150620712878417142506272987346444124091739975551181216461921192011034593560...
0111111235813839610912213528341870111191820980111621134411526117081189013962258523981451566682548131627023188183621366492391462264627555473638193638137410012193463935675640192119201...

Diophantine equation:s2-29p2 = 1
d = distance to nearest square N2:+4
Smallest non-trivial s:(2*25+4)/4rational: 54/4actual: 9801⇒ F=19602
Smallest non-trivial p:2*5/4rational: 10/4actual: 1820⇒ primus foldage=1820
v-value qt-blocks:702-29*132:-1
Number of series:21

Cross multiplying the red-green pairs renders subsequent solutions of the diophantine equation.
s19801192119201...
p0182035675640...

In the numerator:U(1,9801)19602=1/2*U(2,19602)19602-half the secundus of 19602.
In the denominator:U(0,1820)19602=1820*U(0,1)19602-the 1820-fold primus of 19602.
as well as ...
In the numerator:U(0,52780)19602=52780*U(0,1)19602-the 29*1820-fold primus of 19602.
In the denominator:U(1,9801)19602=1/2*U(2,19602)19602-half the secundus of 19602.
and ...
In the numerator:U(-70,70)19602=70*U(-1,1)19602-the 70-fold quartus of 19602.
In the denominator:U(13,13)19602=13*U(1,1)19602-the 13-fold tertius of 19602.


23567810111213141517181920212223242627282930
31323334353738394041424344454647485051525354555657
58596061626365666768697071727374757677787980828384
858687888990919293949596979899101102103104105106107108109110