7 is carréphylic - approach of √7 ~ 2.6457513111

Subsequent approximations of √7 - the position of a fraction indicates whether it is over or under the root-value.
1012358212937458212733646359071713072024535573799403114272083032257853441176011498581821153319735140881360149187423723883252902413529073881931512167704029870191380633424625649384319835130576328345472491...
01111238111417314812717522327149476520242789355443197873121923225744449566416883312547419430751408870839590270210970091999711309672081931511128987114386591174833113186990249353213130576328...

Diophantine equation:s2-7p2 = 1
d = distance to nearest square N2:-2
Smallest non-trivial s:(2*9-2)/2rational: 8actual: 8⇒ F=16
Smallest non-trivial p:2*3/2rational: 3actual: 3⇒ primus foldage=3
v-value tq-blocks:32-7*12:+2
Number of series:6

Cross multiplying the red-green pairs renders subsequent solutions of the diophantine equation.
s181272024322575140888193151130576328...
p034876512192194307309672049353213...

In the numerator:U(1,8)16=1/2*U(2,16)16-half the secundus of 16.
In the denominator:U(0,3)16=3*U(0,1)16-the 3-fold primus of 16.
as well as ...
In the numerator:U(0,21)16=21*U(0,1)16-the 7*3-fold primus of 16.
In the denominator:U(1,8)16=1/2*U(2,16)16-half the secundus of 16.
and ...
In the numerator:U(3,3)16=3*U(1,1)16-the 3-fold tertius of 16.
In the denominator:U(-1,1)16=-the quartus of 16.


23567810111213141517181920212223242627282930
31323334353738394041424344454647485051525354555657
58596061626365666768697071727374757677787980828384
858687888990919293949596979899101102103104105106107108109110