69 is carréphobic - approach of √69 ~ 8.3066238629

Subsequent approximations of √69 - the position of a fraction indicates whether it is over or under the root-value.
101234567817255883108299407515623176123845391777564584723598013487909956841034591112341190091267842613433881279030381291165167929246497496329041800833396876252738358337071208838300411209012491004281200...
011111111123710133649627521228764993677758711964710583115191245513391143271526331462467251087131554382021635597647619279640901166253329659644628491009195114554800120901249...

Diophantine equation:s2-69p2 = 1
d = distance to nearest square N2:+5
Smallest non-trivial s:(2*64+5)/5rational: 133/5actual: 7775⇒ F=15550
Smallest non-trivial p:2*8/5rational: 16/5actual: 936⇒ primus foldage=936
v-value tq-blocks:1082-69*132:+3
v-value qt-blocks:2992-69*362:-23
Number of series:22

Cross multiplying the red-green pairs renders subsequent solutions of the diophantine equation.
s17775120901249...
p093614554800...

In the numerator:U(1,7775)15550=1/2*U(2,15550)15550-half the secundus of 15550.
In the denominator:U(0,936)15550=936*U(0,1)15550-the 936-fold primus of 15550.
as well as ...
In the numerator:U(0,68584)15550=68584*U(0,1)15550-the 69*936-fold primus of 15550.
In the denominator:U(1,7775)15550=1/2*U(2,15550)15550-half the secundus of 15550.
and ...
In the numerator:U(108,108)15550=108*U(1,1)15550-the 108-fold tertius of 15550.
In the denominator:U(-13,13)15550=13*U(-1,1)15550-the 13-fold quartus of 15550.
and ...
In the numerator:U(-299,299)15550=299*U(-1,1)15550-the 299-fold quartus of 15550.
In the denominator:U(36,36)15550=36*U(1,1)15550-the 36-fold tertius of 15550.


23567810111213141517181920212223242627282930
31323334353738394041424344454647485051525354555657
58596061626365666768697071727374757677787980828384
858687888990919293949596979899101102103104105106107108109110