93 is carréphobic - approach of √93 ~ 9.6436507610

Subsequent approximations of √93 - the position of a fraction indicates whether it is over or under the root-value.
101234567891019297710613556970483926523491433078211215111718012933114148215363316578417793519008620223721438822653923869046522970391918730672576986328090513827539171084442038934964448952848383011052276501900659512952936012847708360...
011111111111238111459738727536244981112601215113411146711593117191184511971120971222312349124751482427299319422826722134021414338491774063211427766830458797322109115991970892130620520295293601...

Diophantine equation:s2-93p2 = 1
d = distance to nearest square N2:-7
Smallest non-trivial s:(2*100-7)/7rational: 193/7actual: 12151⇒ F=24302
Smallest non-trivial p:2*10/7rational: 20/7actual: 1260⇒ primus foldage=1260
v-value qt-blocks:1352-93*142:-3
Number of series:24

Cross multiplying the red-green pairs renders subsequent solutions of the diophantine equation.
s112151295293601...
p0126030620520...

In the numerator:U(1,12151)24302=1/2*U(2,24302)24302-half the secundus of 24302.
In the denominator:U(0,1260)24302=1260*U(0,1)24302-the 1260-fold primus of 24302.
as well as ...
In the numerator:U(0,117180)24302=117180*U(0,1)24302-the 93*1260-fold primus of 24302.
In the denominator:U(1,12151)24302=1/2*U(2,24302)24302-half the secundus of 24302.
and ...
In the numerator:U(-135,135)24302=135*U(-1,1)24302-the 135-fold quartus of 24302.
In the denominator:U(14,14)24302=14*U(1,1)24302-the 14-fold tertius of 24302.


23567810111213141517181920212223242627282930
31323334353738394041424344454647485051525354555657
58596061626365666768697071727374757677787980828384
858687888990919293949596979899101102103104105106107108109110