97 is carréphobic - approach of √97 ~ 9.8488578018

Using the incremental profile, the questionmarks can be filled in - the position of a fraction indicates whether it is over or under the root-value. The positioning of the missing fractions corresponds to the first section.
Subsequent approximations of √97.
101234567891039495969128197325522847306339104757560460797664017200577609832138881794421100025105629111233439328550561661794773027143482122078483642669585051794931863433007543823261533164476280963361860314468141277774422241080703204386984167693265130999546094210582705751121080208118388984112466994744923988263617068773774173872118664086685????????703970372268??????????????????????789009999518937777708472894572304...
011111111111456713203353863113974835696173674273117880844990189587101561072511294446075590167195784891456842241733698575940309638873485691444957854134656377352628096336918698575564337819416898831904194696393101073745107451097113828449120205801126583153499955260626538413753121566879704719????????71477361785??????????????????????8011182772636327890099995189377...

Diophantine equation:s2-97p2 = 1
d = distance to nearest square N2:-3
Smallest non-trivial s:(2*100-3)/3rational: 197/3actual: 62809633⇒ F=125619266
Smallest non-trivial p:2*10/3rational: 20/3actual: 6377352⇒ primus foldage=6377352
v-value qt-blocks:56042-97*5692:-3
Number of series:47

Cross multiplying the red-green pairs renders subsequent solutions of the diophantine equation.
s1628096337890099995189377...
p06377352801118277263632...

In the numerator:U(1,62809633)125619266=1/2*U(2,125619266)125619266-half the secundus of 125619266.
In the denominator:U(0,6377352)125619266=6377352*U(0,1)125619266-the 6377352-fold primus of 125619266.
as well as ...
In the numerator:U(0,618603144)125619266=618603144*U(0,1)125619266-the 97*6377352-fold primus of 125619266.
In the denominator:U(1,62809633)125619266=1/2*U(2,125619266)125619266-half the secundus of 125619266.
and ...
In the numerator:U(-5604,5604)125619266=5604*U(-1,1)125619266-the 5604-fold quartus of 125619266.
In the denominator:U(569,569)125619266=569*U(1,1)125619266-the 569-fold tertius of 125619266.


23567810111213141517181920212223242627282930
31323334353738394041424344454647485051525354555657
58596061626365666768697071727374757677787980828384
858687888990919293949596979899101102103104105106107108109110