92 is carréphobic - approach of √92=2√23 ~ 9.5916630466

Subsequent approximations of √92 - the position of a fraction indicates whether it is over or under the root-value.
101234567891019294811516321147068111511104012191133421449315644167951794619097202482139922550439496649911044826484537529348574110819301567671264960125414080...
01111111111123512172249711201151127113911511163117511871199121112231235145826933115152761239127506421127991634412762402649601...

Diophantine equation:s2-92p2 = 1
d = distance to nearest square N2:-8
Smallest non-trivial s:(2*100-8)/8rational: 24actual: 1151⇒ F=2302
Smallest non-trivial p:2*10/8rational: 20/8actual: 120⇒ primus foldage=120
v-value tq-blocks:482-92*52:+4
v-value qt-blocks:1152-92*122:-23
Number of series:20
Note that the 'rational s' is an integer, but the 'rational p' is not.

Cross multiplying the red-green pairs renders subsequent solutions of the diophantine equation.
s111512649601...
p0120276240...

In the numerator:U(1,1151)2302=1/2*U(2,2302)2302-half the secundus of 2302.
In the denominator:U(0,120)2302=120*U(0,1)2302-the 120-fold primus of 2302.
as well as ...
In the numerator:U(0,11040)2302=11040*U(0,1)2302-the 92*120-fold primus of 2302.
In the denominator:U(1,1151)2302=1/2*U(2,2302)2302-half the secundus of 2302.
and ...
In the numerator:U(48,48)2302=48*U(1,1)2302-the 48-fold tertius of 2302.
In the denominator:U(-5,5)2302=5*U(-1,1)2302-the 5-fold quartus of 2302.
and ...
In the numerator:U(-115,115)2302=115*U(-1,1)2302-the 115-fold quartus of 2302.
In the denominator:U(12,12)2302=12*U(1,1)2302-the 12-fold tertius of 2302.


23567810111213141517181920212223242627282930
31323334353738394041424344454647485051525354555657
58596061626365666768697071727374757677787980828384
858687888990919293949596979899101102103104105106107108109110