59 is carréphobic - approach of √59 ~ 7.6811457479

Subsequent approximations of √59 - the position of a fraction indicates whether it is over or under the root-value.
10123456781523100123146169361530407146015131566161916721725177818311160922440310592313032615472917913238266756179943152604877059543885860006576562456712425576860548247853880965217057505258671571122782801381454371640125941898797514056266595955064104574171529...
011111111123131619224769530599668737806875944101310822095317713790169672014423321498197314056179963493970807978121985435992749910006391073779114691922206983367617146173871798500421352621247202385280809377528331595506410...

Diophantine equation:s2-59p2 = 1
d = distance to nearest square N2:-5
Smallest non-trivial s:(2*64-5)/5rational: 123/5actual: 530⇒ F=1060
Smallest non-trivial p:2*8/5rational: 16/5actual: 69⇒ primus foldage=69
v-value qt-blocks:232-59*32:-2
Number of series:17

Cross multiplying the red-green pairs renders subsequent solutions of the diophantine equation.
s1530561799595506410...
p0697314077528331...

In the numerator:U(1,530)1060=1/2*U(2,1060)1060-half the secundus of 1060.
In the denominator:U(0,69)1060=69*U(0,1)1060-the 69-fold primus of 1060.
as well as ...
In the numerator:U(0,4071)1060=4071*U(0,1)1060-the 59*69-fold primus of 1060.
In the denominator:U(1,530)1060=1/2*U(2,1060)1060-half the secundus of 1060.
and ...
In the numerator:U(-23,23)1060=23*U(-1,1)1060-the 23-fold quartus of 1060.
In the denominator:U(3,3)1060=3*U(1,1)1060-the 3-fold tertius of 1060.


23567810111213141517181920212223242627282930
31323334353738394041424344454647485051525354555657
58596061626365666768697071727374757677787980828384
858687888990919293949596979899101102103104105106107108109110