88 is carréphobic - approach of √88=2√22 ~ 9.3808315196

Subsequent approximations of √88 - the position of a fraction indicates whether it is over or under the root-value.
1012345678919284775122197184820452242243926362833303032273424362174391106018499295594805877617728112805729883346960963103858011161971193814127143113490481426665293094743576127288559116461711893473030580901286874280...
01111111111235813211972182392602813023233443653867931179197231515123827477617858919416510243911071311898712726113553514380915208331244046452377696312414862018449325993530580901...

Diophantine equation:s2-88p2 = 1
d = distance to nearest square N2:+7
Smallest non-trivial s:(2*81+7)/7rational: 169/7actual: 197⇒ F=394
Smallest non-trivial p:2*9/7rational: 18/7actual: 21⇒ primus foldage=21
v-value qt-blocks:282-88*32:-8
Number of series:16

Cross multiplying the red-green pairs renders subsequent solutions of the diophantine equation.
s11977761730580901...
p02182743259935...

In the numerator:U(1,197)394=1/2*U(2,394)394-half the secundus of 394.
In the denominator:U(0,21)394=21*U(0,1)394-the 21-fold primus of 394.
as well as ...
In the numerator:U(0,1848)394=1848*U(0,1)394-the 88*21-fold primus of 394.
In the denominator:U(1,197)394=1/2*U(2,394)394-half the secundus of 394.
and ...
In the numerator:U(-28,28)394=28*U(-1,1)394-the 28-fold quartus of 394.
In the denominator:U(3,3)394=3*U(1,1)394-the 3-fold tertius of 394.


23567810111213141517181920212223242627282930
31323334353738394041424344454647485051525354555657
58596061626365666768697071727374757677787980828384
858687888990919293949596979899101102103104105106107108109110