67 is carréphobic - approach of √67 ~ 8.1853527719

Subsequent approximations of √67 - the position of a fraction indicates whether it is over or under the root-value.
10123456782533419013122110151236145716781899357754769053307363978948842399789448631497473546315595157643999692841741683790525242041732109424001467879345912794926215883859914846612073685114232523616391362118550200634941562753491763388433326030024154073886748667477108192739052988676...
01111111113451116271241511782052324376691106375548615967488425480960776667437271078677846449061196578295701392279488857107429215631492637441121129131475035417387795200252362266267742687913653505901080385033668034224748419255828804284771081927...

Diophantine equation:s2-67p2 = 1
d = distance to nearest square N2:+3
Smallest non-trivial s:(2*64+3)/3rational: 131/3actual: 48842⇒ F=97684
Smallest non-trivial p:2*8/3rational: 16/3actual: 5967⇒ primus foldage=5967
v-value qt-blocks:2212-67*272:-2
Number of series:26

Cross multiplying the red-green pairs renders subsequent solutions of the diophantine equation.
s1488424771081927...
p05967582880428...

In the numerator:U(1,48842)97684=1/2*U(2,97684)97684-half the secundus of 97684.
In the denominator:U(0,5967)97684=5967*U(0,1)97684-the 5967-fold primus of 97684.
as well as ...
In the numerator:U(0,399789)97684=399789*U(0,1)97684-the 67*5967-fold primus of 97684.
In the denominator:U(1,48842)97684=1/2*U(2,97684)97684-half the secundus of 97684.
and ...
In the numerator:U(-221,221)97684=221*U(-1,1)97684-the 221-fold quartus of 97684.
In the denominator:U(27,27)97684=27*U(1,1)97684-the 27-fold tertius of 97684.


23567810111213141517181920212223242627282930
31323334353738394041424344454647485051525354555657
58596061626365666768697071727374757677787980828384
858687888990919293949596979899101102103104105106107108109110