4 is carréphylic - approach of √34 ~ 5.8309518948

Subsequent approximations of √34 - the position of a fraction indicates whether it is over or under the root-value.
1012345617232935204239274309344379414120716212035244914280167291917821627240762652528974844731134471424211713959993961170791134218615135811684976185637120277665911903793966999674351199520169943440...
01111111345635414753596571207278349420244928693289370941294549496914487194562442529394171395200789230183259577288971318365347759101388313616421709401205716011995201...

Diophantine equation:s2-34p2 = 1
d = distance to nearest square N2:-2
Smallest non-trivial s:(2*36-2)/2rational: 35actual: 35⇒ F=70
Smallest non-trivial p:2*6/2rational: 6actual: 6⇒ primus foldage=6
v-value tq-blocks:62-34*12:+2
v-value qt-blocks:172-34*32:-17
Number of series:11

Cross multiplying the red-green pairs renders subsequent solutions of the diophantine equation.
s135244917139511995201...
p06420293942057160...

In the numerator:U(1,35)70=1/2*U(2,70)70-half the secundus of 70.
In the denominator:U(0,6)70=6*U(0,1)70-the 6-fold primus of 70.
as well as ...
In the numerator:U(0,204)70=204*U(0,1)70-the 34*6-fold primus of 70.
In the denominator:U(1,35)70=1/2*U(2,70)70-half the secundus of 70.
and ...
In the numerator:U(6,6)70=6*U(1,1)70-the 6-fold tertius of 70.
In the denominator:U(-1,1)70=-the quartus of 70.
and ...
In the numerator:U(-17,17)70=17*U(-1,1)70-the 17-fold quartus of 70.
In the denominator:U(3,3)70=3*U(1,1)70-the 3-fold tertius of 70.


23567810111213141517181920212223242627282930
31323334353738394041424344454647485051525354555657
58596061626365666768697071727374757677787980828384
858687888990919293949596979899101102103104105106107108109110