109 is carréphobic - approach of √109 ~ 10.4403065089

Here Ed's program failed to provide the last 24 fractions before the sp-block. The sp-block itself was derived from the qt-block, after it was identified as such. The positioning of the missing fractions is derived from a property of roots with the qt-block in the middle of the section: corresponding fractions in the first and second half are on opposite sides of the root-value.
Subsequent approximations of √109.
1012345678910215273941672618771138139953356734813395323952749059585916812319483726296033108373028910613722853033391440549757778890182101706407110596589119486771128376953137267135146157317155047499163937681172827863181718045372326272????????????????????????1580706719862491650306265605900...
0111111111112579162584109134511645779913378646995612652518662251873171269949101661273271374932476593851525974170710593232114447571229628213147807139993321485085715702382165539071740543235662389????????????????????????15140424455100158070671986249...

Diophantine equation:s2-109p2 = 1
d = distance to nearest square N2:+9
Smallest non-trivial s:(2*100+9)/9rational: 209/9actual: 158070671986249⇒ F=316141343972498
Smallest non-trivial p:2*10/9rational: 20/9actual: 15140424455100⇒ primus foldage=15140424455100
v-value qt-blocks:88901822-109*8515252:-1
Number of series:73

Cross multiplying the red-green pairs renders subsequent solutions of the diophantine equation.
s1158070671986249...
p015140424455100...

In the numerator:U(1,158070671986249)316141343972498=1/2*U(2,316141343972498)316141343972498-half the secundus of 316141343972498.
In the denominator:U(0,15140424455100)316141343972498=15140424455100*U(0,1)316141343972498-the 15140424455100-fold primus of 316141343972498.
as well as ...
In the numerator:U(0,1650306265605900)316141343972498=1650306265605900*U(0,1)316141343972498-the 109*15140424455100-fold primus of 316141343972498.
In the denominator:U(1,158070671986249)316141343972498=1/2*U(2,316141343972498)316141343972498-half the secundus of 316141343972498.
and ...
In the numerator:U(-8890182,8890182)316141343972498=8890182*U(-1,1)316141343972498-the 8890182-fold quartus of 316141343972498.
In the denominator:U(851525,851525)316141343972498=851525*U(1,1)316141343972498-the 851525-fold tertius of 316141343972498.


23567810111213141517181920212223242627282930
31323334353738394041424344454647485051525354555657
58596061626365666768697071727374757677787980828384
858687888990919293949596979899101102103104105106107108109110