52 is carréphobic - approach of √52 ~ 7.2111025509

Subsequent approximations of √52 - the position of a fraction indicates whether it is over or under the root-value.
101234567222936101137375512649468053295978662772767925857492232831837541467641310691778334867356645688424016074640691704177594428601843944424410286645111290461197144736756742487281896069963617012746123082709763178165586260875210934358467884878040...
01111111134514195271906497398299191009109911891279392752066485181762466167498921591168208424019592211076041119286113096811426501154332116601415097243675738484175252359243432009959876123521196223111516322701093435846...

Diophantine equation:s2-52p2 = 1
d = distance to nearest square N2:+3
Smallest non-trivial s:(2*49+3)/3rational: 101/3actual: 649⇒ F=1298
Smallest non-trivial p:2*7/3rational: 14/3actual: 90⇒ primus foldage=90
v-value qt-blocks:362-52*52:-4
Number of series:16

Cross multiplying the red-green pairs renders subsequent solutions of the diophantine equation.
s16498424011093435846...
p090116820151632270...

In the numerator:U(1,649)1298=1/2*U(2,1298)1298-half the secundus of 1298.
In the denominator:U(0,90)1298=90*U(0,1)1298-the 90-fold primus of 1298.
as well as ...
In the numerator:U(0,4680)1298=4680*U(0,1)1298-the 52*90-fold primus of 1298.
In the denominator:U(1,649)1298=1/2*U(2,1298)1298-half the secundus of 1298.
and ...
In the numerator:U(-36,36)1298=36*U(-1,1)1298-the 36-fold quartus of 1298.
In the denominator:U(5,5)1298=5*U(1,1)1298-the 5-fold tertius of 1298.


23567810111213141517181920212223242627282930
31323334353738394041424344454647485051525354555657
58596061626365666768697071727374757677787980828384
858687888990919293949596979899101102103104105106107108109110