86 is carréphobic - approach of √86 ~ 9.2736184955

Subsequent approximations of √86 - the position of a fraction indicates whether it is over or under the root-value.
1012345678919283765102575677779881983186428477558104059649210689711730212770713811214851715892216932717973219013739067958081677095313517692122722119653791408810116210823183335452045626738789812592460791572819702165280492007998520...
011111111112347116273849510620130781511221040511527126491377114893160151713718259193812050342128626318313414576522889912902601519159174805819769572205856418281363886691696015123348820216528049...

Diophantine equation:s2-86p2 = 1
d = distance to nearest square N2:+5
Smallest non-trivial s:(2*81+5)/5rational: 167/5actual: 10405⇒ F=20810
Smallest non-trivial p:2*9/5rational: 18/5actual: 1122⇒ primus foldage=1122
v-value qt-blocks:1022-86*112:-2
Number of series:24

Cross multiplying the red-green pairs renders subsequent solutions of the diophantine equation.
s110405216528049...
p0112223348820...

In the numerator:U(1,10405)20810=1/2*U(2,20810)20810-half the secundus of 20810.
In the denominator:U(0,1122)20810=1122*U(0,1)20810-the 1122-fold primus of 20810.
as well as ...
In the numerator:U(0,96492)20810=96492*U(0,1)20810-the 86*1122-fold primus of 20810.
In the denominator:U(1,10405)20810=1/2*U(2,20810)20810-half the secundus of 20810.
and ...
In the numerator:U(-102,102)20810=102*U(-1,1)20810-the 102-fold quartus of 20810.
In the denominator:U(11,11)20810=11*U(1,1)20810-the 11-fold tertius of 20810.


23567810111213141517181920212223242627282930
31323334353738394041424344454647485051525354555657
58596061626365666768697071727374757677787980828384
858687888990919293949596979899101102103104105106107108109110