108 is carréphobic - approach of √108=6√3 ~ 10.3923048454

Subsequent approximations of √108 - the position of a fraction indicates whether it is over or under the root-value.
101234567891021315213518723929153082113511404015391167421809319444207952214623497248482619927550564518400114045236490550535764580978626114320702218331365040137936080...
011111111111235131823285179130135114811611174118712001213122612391252126515432808313515351134862862143756581378012134593512603650401...

Diophantine equation:s2-108p2 = 1
d = distance to nearest square N2:+8
Smallest non-trivial s:(2*100+8)/8rational: 26actual: 1351⇒ F=2702
Smallest non-trivial p:2*10/8rational: 20/8actual: 130⇒ primus foldage=130
v-value tq-blocks:522-108*52:+4
v-value qt-blocks:1352-108*132:-27
Number of series:21
Note that the 'rational s' is an integer, but the 'rational p' is not.

Cross multiplying the red-green pairs renders subsequent solutions of the diophantine equation.
s113513650401...
p0130351260...

In the numerator:U(1,1351)2702=1/2*U(2,2702)2702-half the secundus of 2702.
In the denominator:U(0,130)2702=130*U(0,1)2702-the 130-fold primus of 2702.
as well as ...
In the numerator:U(0,14040)2702=14040*U(0,1)2702-the 108*130-fold primus of 2702.
In the denominator:U(1,1351)2702=1/2*U(2,2702)2702-half the secundus of 2702.
and ...
In the numerator:U(52,52)2702=52*U(1,1)2702-the 52-fold tertius of 2702.
In the denominator:U(-5,5)2702=5*U(-1,1)2702-the 5-fold quartus of 2702.
and ...
In the numerator:U(-135,135)2702=135*U(-1,1)2702-the 135-fold quartus of 2702.
In the denominator:U(13,13)2702=13*U(1,1)2702-the 13-fold tertius of 2702.


23567810111213141517181920212223242627282930
31323334353738394041424344454647485051525354555657
58596061626365666768697071727374757677787980828384
858687888990919293949596979899101102103104105106107108109110