51 is carréphylic - approach of √51 ~ 7.1414284285

Subsequent approximations of √51 - the position of a fraction indicates whether it is over or under the root-value.
10123456729364350357407457507557607657707287835854292499935700406994569850697556966069565694706932877713584644291574998503569643406949345693435069193556904360688936568743706859328774222358428154291140849980001356928600...
011111111456750576471788592994035026017004999569963997099779984999199989940296501956009469993499850569843639836709829779822849815919808989801402919750189986008799699860049980001...

Diophantine equation:s2-51p2 = 1
d = distance to nearest square N2:+2
Smallest non-trivial s:(2*49+2)/2rational: 50actual: 50⇒ F=100
Smallest non-trivial p:2*7/2rational: 7actual: 7⇒ primus foldage=7
v-value qt-blocks:72-51*12:-2
Number of series:12

Cross multiplying the red-green pairs renders subsequent solutions of the diophantine equation.
s150499949985049980001...
p07700699936998600...

In the numerator:U(1,50)100=1/2*U(2,100)100-half the secundus of 100.
In the denominator:U(0,7)100=7*U(0,1)100-the 7-fold primus of 100.
as well as ...
In the numerator:U(0,357)100=357*U(0,1)100-the 51*7-fold primus of 100.
In the denominator:U(1,50)100=1/2*U(2,100)100-half the secundus of 100.
and ...
In the numerator:U(-7,7)100=7*U(-1,1)100-the 7-fold quartus of 100.
In the denominator:U(1,1)100=-the tertius of 100.


23567810111213141517181920212223242627282930
31323334353738394041424344454647485051525354555657
58596061626365666768697071727374757677787980828384
858687888990919293949596979899101102103104105106107108109110