74 is carréphobic - approach of √74 ~ 8.6023252670

Subsequent approximations of √74 - the position of a fraction indicates whether it is over or under the root-value.
1012345678917264341345649954258562867171475714712228369931820355193921842917466165031554014577136141265111126523191634318157305504733732043691361400951843276754645832496398952821465600303108824491648275227365201235404360...
01111111111235485358636873788388171259430369941294559498954195849627967097139756914708222773698535514239212742911246609750308254006757705261403765102212650591916081318114027365201...

Diophantine equation:s2-74p2 = 1
d = distance to nearest square N2:-7
Smallest non-trivial s:(2*81-7)/7rational: 155/7actual: 3699⇒ F=7398
Smallest non-trivial p:2*9/7rational: 18/7actual: 430⇒ primus foldage=430
v-value qt-blocks:432-74*52:-1
Number of series:25

Cross multiplying the red-green pairs renders subsequent solutions of the diophantine equation.
s1369927365201...
p04303181140...

In the numerator:U(1,3699)7398=1/2*U(2,7398)7398-half the secundus of 7398.
In the denominator:U(0,430)7398=430*U(0,1)7398-the 430-fold primus of 7398.
as well as ...
In the numerator:U(0,31820)7398=31820*U(0,1)7398-the 74*430-fold primus of 7398.
In the denominator:U(1,3699)7398=1/2*U(2,7398)7398-half the secundus of 7398.
and ...
In the numerator:U(-43,43)7398=43*U(-1,1)7398-the 43-fold quartus of 7398.
In the denominator:U(5,5)7398=5*U(1,1)7398-the 5-fold tertius of 7398.


23567810111213141517181920212223242627282930
31323334353738394041424344454647485051525354555657
58596061626365666768697071727374757677787980828384
858687888990919293949596979899101102103104105106107108109110