65 is carréphylic - approach of √65 ~ 8.0622577483

Subsequent approximations of √65 - the position of a fraction indicates whether it is over or under the root-value.
1012345678738189971051131211291040116912981427155616851814194320721877720849229212499327065291373120933281268320...
01111111119101112131415161291451611771932092252412572329258628433100335736143871412833281...

Diophantine equation:s2-65p2 = 1
d = distance to nearest square N2:+1
Smallest non-trivial s:(2*64+1)/1rational: 129actual: 129⇒ F=258
Smallest non-trivial p:2*8/1rational: 16actual: 16⇒ primus foldage=16
v-value qt-blocks:82-65*12:-1
Number of series:17

Cross multiplying the red-green pairs renders subsequent solutions of the diophantine equation.
s112933281...
p0164128...

In the numerator:U(1,129)258=1/2*U(2,258)258-half the secundus of 258.
In the denominator:U(0,16)258=16*U(0,1)1258-the 16-fold primus of 258.
as well as ...
In the numerator:U(0,1040)258=1040*U(0,1)258-the 65*16-fold primus of 258.
In the denominator:U(1,129)258=1/2*U(2,258)258-half the secundus of 258.
and ...
In the numerator:U(-8,8)258=8*U(-1,1)258-the 8-fold quartus of 258.
In the denominator:U(1,1)258=-the tertius of 258.


23567810111213141517181920212223242627282930
31323334353738394041424344454647485051525354555657
58596061626365666768697071727374757677787980828384
858687888990919293949596979899101102103104105106107108109110