41 is carréphobic - approach of √41 ~ 6.4031242374

Subsequent approximations of √41 - the position of a fraction indicates whether it is over or under the root-value.
101234561319322372693013333653978261223204913120151691721819267213162336525414528777829113116897105311022211233389136455714957251626893338495450118478396801537657606216256170559362789561638735296495749765104146566216689933320836499537526432397937495745169013895054427821559195425361294806856667007117138715406662053854778334410088449220332071360...
011111112353742475257621291913202049236926893009332936493969825812227204851516531721381926232131082335932540785286417827191311360839680197081611101952112330881136422411495360116264961338412825010624383947525621473957705421482789369007873316532957264057104121158221663706893207582271537395296034410088449...

Diophantine equation:s2-41p2 = 1
d = distance to nearest square N2:+5
Smallest non-trivial s:(2*36+5)/5rational: 77/5actual: 2049⇒ F=4098
Smallest non-trivial p:2*6/5rational: 12/5actual: 320⇒ primus foldage=320
v-value qt-blocks:322-41*52:-1
Number of series:19

Cross multiplying the red-green pairs renders subsequent solutions of the diophantine equation.
s12049839680134410088449...
p032013113605373952960...

In the numerator:U(1,2049)4098=1/2*U(2,4098)4098-half the secundus of 4098.
In the denominator:U(0,320)4098=320*U(0,1)4098-the 320-fold primus of 4098.
as well as ...
In the numerator:U(0,13120)3040=13120*U(0,1)4098-the 41*320-fold primus of 4098.
In the denominator:U(1,2049)4098=1/2*U(2,4098)4098-half the secundus of 4098.
and ...
In the numerator:U(-32,32)4098=32*U(-1,1)4098-the 32-fold quartus of 4098.
In the denominator:U(5,5)4098=5*U(1,1)4098-the 5-fold tertius of 4098.


23567810111213141517181920212223242627282930
31323334353738394041424344454647485051525354555657
58596061626365666768697071727374757677787980828384
858687888990919293949596979899101102103104105106107108109110