83 is carréphylic - approach of √83 ~ 9.1104335791

Subsequent approximations of √83 - the position of a fraction indicates whether it is over or under the root-value.
10123456789465564738274782991199310751157123913211403148575078992104771196213447122508...
0111111111156789829110010911812713614515416382498711501313147613447...

Diophantine equation:s2-83p2 = 1
d = distance to nearest square N2:+2
Smallest non-trivial s:(2*81+2)/2rational: 82actual: 82⇒ F=164
Smallest non-trivial p:2*9/2rational: 9actual: 9⇒ primus foldage=9
v-value qt-blocks:92-83*12:-2
Number of series:15

Cross multiplying the red-green pairs renders subsequent solutions of the diophantine equation.
s18213447...
p091476...

In the numerator:U(1,82)164=1/2*U(2,164)164-half the secundus of 164.
In the denominator:U(0,9)164=9*U(0,1)164-the 9-fold primus of 164.
as well as ...
In the numerator:U(0,747)164=747*U(0,1)164-the 83*9-fold primus of 164.
In the denominator:U(1,82)164=1/2*U(2,164)164-half the secundus of 164.
and ...
In the numerator:U(-9,9)164=9*U(-1,1)164-the 9-fold quartus of 164.
In the denominator:U(1,1)164=-the tertius of 164.


23567810111213141517181920212223242627282930
31323334353738394041424344454647485051525354555657
58596061626365666768697071727374757677787980828384
858687888990919293949596979899101102103104105106107108109110