39 is carréphylic - approach of √39 ~ 6.2449979984

Subsequent approximations of √39 - the position of a fraction indicates whether it is over or under the root-value.
101234561925156181206231256281306943124978009049102981154712796140451529447131624253898444522695146945771196395447019697643942355607312000119484400226044012572440228844403319644043508440538204406117733219155937625973830156...
0111111134252933374145491512001249144916491849204922492449754799966242572421824179241310240911240512240137719949960031200013619601411920146188015118401561800161176011885240324970004155937625...

Diophantine equation:s2-39p2 = 1
d = distance to nearest square N2:+3
Smallest non-trivial s:(2*36+3)/3rational: 25actual: 25⇒ F=50
Smallest non-trivial p:2*6/3rational: 4actual: 4⇒ primus foldage=4
v-value qt-blocks:62-39*12:-3
Number of series:9

Cross multiplying the red-green pairs renders subsequent solutions of the diophantine equation.
s1251249624253120001155937625...
p04200999649960024970004...

In the numerator:U(1,25)50=1/2*U(2,50)50-half the secundus of 50.
In the denominator:U(0,4)50=4*U(0,1)50-the 4-fold primus of 50.
as well as ...
In the numerator:U(0,156)50=156*U(0,1)50-the 39*4-fold primus of 50.
In the denominator:U(1,25)50=1/2*U(2,50)50-half the secundus of 50.
and ...
In the numerator:U(-6,6)50=6*U(-1,1)50-the 6-fold quartus of 50.
In the denominator:U(1,1)50=-the tertius of 50.


23567810111213141517181920212223242627282930
31323334353738394041424344454647485051525354555657
58596061626365666768697071727374757677787980828384
858687888990919293949596979899101102103104105106107108109110