79 is carréphylic - approach of √79 ~ 8.8881944173

Subsequent approximations of √79 - the position of a fraction indicates whether it is over or under the root-value.
1012345678944536271807117918719511031111111911271135114317075850699371136812799113760...
011111111115678980899810711612513414315216179695711181279144012799...

Diophantine equation:s2-79p2 = 1
d = distance to nearest square N2:-2
Smallest non-trivial s:(2*81-2)/2rational: 80actual: 80⇒ F=160
Smallest non-trivial p:2*9/2rational: 9actual: 9⇒ primus foldage=9
v-value qt-blocks:92-79*12:+2
Number of series:15

Cross multiplying the red-green pairs renders subsequent solutions of the diophantine equation.
s18012799...
p091440...

In the numerator:U(1,80)160=1/2*U(2,160)160-half the secundus of 160.
In the denominator:U(0,9)160=9*U(0,1)160-the 9-fold primus of 160.
as well as ...
In the numerator:U(0,711)160=711*U(0,1)160-the 79*9-fold primus of 160.
In the denominator:U(1,80)160=1/2*U(2,160)160-half the secundus of 160.
and ...
In the numerator:U(9,9)160=9*U(1,1)160-the 9-fold tertius of 96.
In the denominator:U(-1,1)96=-the quartus of 96.


23567810111213141517181920212223242627282930
31323334353738394041424344454647485051525354555657
58596061626365666768697071727374757677787980828384
858687888990919293949596979899101102103104105106107108109110