106 is carréphobic - approach of √106 ~ 10.2956301410

Using the incremental profile, the questionmarks can be filled in - the position of a fraction indicates whether it is over or under the root-value. The positioning of the missing fractions corresponds to the first section.
Subsequent approximations of √106.
101234567891021317210317527845373111842821400545239492445324957254612596526469269732747727981284166573247857576998824855140185322267083628561585526994838302259622132080051330284340362364391494444442426524493458604544490684595522764646554844697586924748619004799651084850133424975119853346014621754052660708865311228842705?????256961212515????????????????????205825934432520121191076943402680...
01111111111123710172744711152743894394478351725561595063396728711775067895161792407456043801171361602162773524375687149211512194739311589032080051351959413831183141427721445436114765950150775391538912815700717160123061632389511295937921928327434489044376417371801090641617?????24958279289????????????????????1999158202207802058259344325201...

Diophantine equation:s2-106p2 = 1
d = distance to nearest square N2:+6
Smallest non-trivial s:(2*100+6)/6rational: 206/6actual: 32080051⇒ F=64160102
Smallest non-trivial p:2*10/6rational: 20/6actual: 3115890⇒ primus foldage=3115890
v-value qt-blocks:40052-106*3892:-1
Number of series:43

Cross multiplying the red-green pairs renders subsequent solutions of the diophantine equation.
s1320800512058259344325201...
p03115890199915820220780...

In the numerator:U(1,32080051)64160102=1/2*U(2,64160102)864160102-half the secundus of 64160102.
In the denominator:U(0,3115890)64160102=3115890*U(0,1)64160102-the 3115890-fold primus of 64160102.
as well as ...
In the numerator:U(0,330284340)64160102=330284340*U(0,1)64160102-the 106*3115890-fold primus of 64160102.
In the denominator:U(1,32080051)64160102=1/2*U(2,64160102)64160102-half the secundus of 64160102.
and ...
In the numerator:U(-4005,14005)64160102=4005*U(-1,1)64160102-the 4005-fold quartus of 64160102.
In the denominator:U(389,389)64160102=389*U(1,1)64160102-the 389-fold tertius of 64160102.


23567810111213141517181920212223242627282930
31323334353738394041424344454647485051525354555657
58596061626365666768697071727374757677787980828384
858687888990919293949596979899101102103104105106107108109110