37 is carréphylic - approach of √37 ~ 6.0827625303

Subsequent approximations of √37 - the position of a fraction indicates whether it is over or under the root-value.
101234564349556167734445175906637368098826247712980118893977510657648247548186138967951074521181091287669120191040785116955112983171427083155584994638601101970912575558141314071568725617243105187989541331485271519474811707464351895453892083443432271432971381658736...
01111111789101112738597109121133145102711721317146216071752106571240914161159131766519417211691499351711041922732134422346112557801555849181162920674092323189257896928347493090529218894832498001228070541311610703425159937342128227143297...

Diophantine equation:s2-37p2 = 1
d = distance to nearest square N2:+1
Smallest non-trivial s:(2*36+1)/1rational: 73actual: 73⇒ F=146
Smallest non-trivial p:2*6/1rational: 12actual: 12⇒ primus foldage=12
v-value qt-blocks:62-37*12:-1
Number of series:13

Cross multiplying the red-green pairs renders subsequent solutions of the diophantine equation.
s173106571555849227143297...
p012175225578037342128...

In the numerator:U(1,73)146=1/2*U(2,146)146-half the secundus of 146.
In the denominator:U(0,12)146=12*U(0,1)146-the 12-fold primus of 146.
as well as ...
In the numerator:U(0,444)146=444*U(0,1)146-the 37*12-fold primus of 146.
In the denominator:U(1,73)146=1/2*U(2,146)146-half the secundus of 146.
and ...
In the numerator:U(-6,6)146=6*U(-1,1)146-the 6-fold quartus of 146.
In the denominator:U(1,1)146=-the tertius of 146.


23567810111213141517181920212223242627282930
31323334353738394041424344454647485051525354555657
58596061626365666768697071727374757677787980828384
858687888990919293949596979899101102103104105106107108109110