94 is carréphobic - approach of √94 ~ 9.6953597148

Using the incremental profile, the questionmarks can be filled in - the position of a fraction indicates whether it is over or under the root-value. The positioning of the missing fractions corresponds to the first section.
Subsequent approximations of √94.
10123456789101929689712622379510181241146470978561100251148912953144175620470621850389945518449346844165293414903612143295207800162292331125066606272099012935319631496491336397863578308137926376400696714221296682282637124495603291204172415699775540195378955895153340788083743637759905319671143627556629630421936327?????????????918742691404989075408785440...
0111111111112371013238210512815173288310341185133614875797728487711025819029483166734515371922106421432952364359258542328064873027551324861534696793690743391180741328714353935848680612840741300354174287615855716899985930573514960704500891275486821846472752413137783148?????????????9476107317609187426914049...

Diophantine equation:s2-94p2 = 1
d = distance to nearest square N2:-6
Smallest non-trivial s:(2*100-6)/6rational: 194/6actual: 2143295⇒ F=4286590
Smallest non-trivial p:2*10/6rational: 20/6actual: 221064⇒ primus foldage=221064
v-value tq-blocks:14642-94*1512:+2
v-value qt-blocks:70972-94*7322:-47
Number of series:36

Cross multiplying the red-green pairs renders subsequent solutions of the diophantine equation.
s121432959187426914049...
p0221064947610731760...

In the numerator:U(1,2143295)4286590=1/2*U(2,4286590)4286590-half the secundus of 4286590.
In the denominator:U(0,221064)4286590=221064*U(0,1)4286590-the 221064-fold primus of 4286590.
as well as ...
In the numerator:U(0,20780016)4286590=20780016*U(0,1)4286590-the 94*221064-fold primus of 4286590.
In the denominator:U(1,2143295)4286590=1/2*U(2,4286590)4286590-half the secundus of 4286590.
and ...
In the numerator:U(1464,1464)4286590=1464*U(1,1)4286590-the 1464-fold tertius of 4286590.
In the denominator:U(-151,151)4286590=151*U(-1,1)4286590-the 151-fold quartus of 4286590.
and ...
In the numerator:U(-7097,7097)4286590=7097*U(-1,1)4286590-the 7097-fold quartus of 4286590.
In the denominator:U(732,732)4286590=732*U(1,1)4286590-the 732-fold tertius of 4286590.


23567810111213141517181920212223242627282930
31323334353738394041424344454647485051525354555657
58596061626365666768697071727374757677787980828384
858687888990919293949596979899101102103104105106107108109110