22 is carréphobic - approach of √22 ~ 4.6904157598

Subsequent approximations of √22 - the position of a fraction indicates whether it is over or under the root-value.
1012345914476113619792411211318151517121909362155301849924029535887761736405644167351929059690767452475214114266652178806728855994673652111353630580901143437140...
0111111231013294219723928132336540777211793944512311425165487761794165110713127261143809160357304166464523155392620184494501421651987030580901...

Diophantine equation:s2-22p2 = 1
d = distance to nearest square N2:-3
Smallest non-trivial s:(2*25-3)/3rational: 47/3actual: 197⇒ F=394
Smallest non-trivial p:2*5/3rational: 10/3actual: 42⇒ primus foldage=42
v-value qt-blocks:142-22*32:-2
Number of series:12

Cross multiplying the red-green pairs renders subsequent solutions of the diophantine equation.
s11977761730580901...
p042165486519870...

In the numerator:U(1,197)394=1/2*U(2,394)394-half the secundus of 394.
In the denominator:U(0,42)394=42*U(0,1)394-the 42-fold primus of 394.
as well as ...
In the numerator:U(0,924)394=924*U(0,1)394-the 22*42-fold primus of 394.
In the denominator:U(1,197)394=1/2*U(2,394)394-half the secundus of 394.
and ...
In the numerator:U(-14,14)394=14*U(-1,1)394-the 14-fold quartus of 394.
In the denominator:U(3,3)394=3*U(1,1)394-the 3-fold tertius of 394.


23567810111213141517181920212223242627282930
31323334353738394041424344454647485051525354555657
58596061626365666768697071727374757677787980828384
858687888990919293949596979899101102103104105106107108109110