58 is carréphobic - approach of √58 ~ 7.6157731059

Subsequent approximations of √58 - the position of a fraction indicates whether it is over or under the root-value.
10123456781523386199853952105111501249134814471546299345397532120711960314929216889518849820810122770424730726691028651330611659262989874514913742390119388149333442063373235564120504945086542489680355284952856731021606125141173435351779560492952995844732556337685552175853142152...
011111111123581311212513815116417719020339359698915852574196032217724751273252989932473350473762140195778161180111958273138385096654391158490082354104885920153642981869394837449148795881315407961233667743877473562141509100916244768555217...

Diophantine equation:s2-58p2 = 1
d = distance to nearest square N2:-6
Smallest non-trivial s:(2*64-6)/6rational: 122/6actual: 19603⇒ F=39206
Smallest non-trivial p:2*8/6rational: 16/6actual: 2574⇒ primus foldage=2574
v-value qt-blocks:992-58*132:-1
Number of series:27

Cross multiplying the red-green pairs renders subsequent solutions of the diophantine equation.
s119603768555217...
p02574100916244...

In the numerator:U(1,19603)39206=1/2*U(2,39206)39206-half the secundus of 39206.
In the denominator:U(0,2574)39206=2574*U(0,1)39206-the 2574-fold primus of 39206.
as well as ...
In the numerator:U(0,149292)39206=149292*U(0,1)39206-the 58*2574-fold primus of 39206.
In the denominator:U(1,19603)39206=1/2*U(2,39206)39206-half the secundus of 39206.
and ...
In the numerator:U(-99,99)39206=99*U(-1,1)39206-the 99-fold quartus of 39206.
In the denominator:U(13,13)39206=13*U(1,1)39206-the 13-fold tertius of 39206.


23567810111213141517181920212223242627282930
31323334353738394041424344454647485051525354555657
58596061626365666768697071727374757677787980828384
858687888990919293949596979899101102103104105106107108109110